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Quantum chaotic trajectories in integrable right triangular billiards
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Right triangular billiards are very simple systems that are completely integrable in classical mechanics for
acute angle pairs (45°,45°) and (30°,60°). In quantum mechanics, the energy level spacing distribution of
these billiards are neither Poisson-like nor Wigner-like. We use Bohm’s formalism to calculate the trajectories,
by numerical methods, for a particle inside these billiards. We use a linear combination of the first three energy
states as the initial wave function. We show that a particle can have quasiperiodic or chaotic behavior,
depending on its initial position in the billiards.
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Chaos in quantum systems has received a lot of atten
since it was conjectured that a signature of chaos could
provided by random matrix theory@1,2#. Level spacing sta-
tistics of quantum systems that are classically chaotic is s
posed to yield a Gaussian-like distribution. This Wigner s
mise was conjectured by Bohigaset al. @3#. Despite its
success in many cases, there are a few examples in w
such conjecture fails@4#. In fact, the signature of chaos i
quantum systems is still a subject of controversy.

The current studies of quantum billiards in convention
quantum mechanics have shown behaviors that are simil
those in the classical world: integrable classical systems
also integrable in quantum mechanics; ergodic classical
tems are also ergodic in quantum mechanics. Integrable
tems yield a Poisson-like distribution for the neighbori
level spacing statistics, while ergodic systems produc
Gaussian-like distribution. A complete theory for quantu
systems with intermediate statistics is still lacking. In in
grable classical systems, we can use the semiclassical th
to quantize the classical Hamiltonian, while for ergodic s
tems, the analysis rests mainly on the behavior of the Wig
function in the phase space. However, the quantization
classical Hamiltonians of systems that are neither integra
nor ergodic is not trivial.

The application of causal quantum mechanics theory,
lowing Bohm’s interpretation, in the study of billiards and
other systems have shown striking surprises when we
lyze a single Bohmian trajectory of an individual syste
@5,6#. Some authors have found chaotic trajectories in s
tems that are integrable in the classical domain. Konkel
Makowski @7# studied the Bohmian trajectories of a partic
in a square billiard and found evidence of chaotic behav
based on an analysis of the patterns of the nodal lines.
same system was investigated by Bonfimet al. @8#, who
found that a initial wave function consisting of energy eige
states must necessarily have at least three componen
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order to obtain chaos. Chaos in Bohmian mechanics w
also reported in nonisotropic harmonic oscillators@9# and in
systems of noninteracting particles@10#.

The present work aims at the study of Bohmian trajec
ries in triangular billiards. Our purpose is to determine t
trajectories for several initial positions, however, with t
same initial wave function. As we shall see below, we obt
both regular and chaotic solutions, as in classical system

In order to study the dynamics of quantum systems
causal Bohm’s theory@11–13#, one first takes the wave func
tion c(x,y,t) in polar form, i.e., c5R exp(2iS/\), into
Schrödinger equation. After some algebraic manipulatio
that equation separates into two equations, one for the
plitude R and the other for the phaseS, as follows:

]R2

]t
1“S R2

“S

M D50, ~1!

]S

]t
1

~“S!2

2M
1V1Q50, ~2!

where V is the ordinary quantized potential andM is the
mass of the particle. The quantityQ52(\2/2M )(¹2R/R) is
the so-called quantum potential. Equation~1! represents the
conservation of probability flux, whereas Eq.~2! can be iden-
tified as a generalized Hamilton-Jacobi equation with
usual potential replaced by the effective potentialVe f f5V
1Q.

In Bohm’s theory, an additional postulate is introduce
the momentum of the particle is defined by

p5“S. ~3!

Hence, the velocity of the particle,v5p/M , can be ex-
pressed in terms of the wave function

v~x,y,t !5
\

2Mi
~c*“c2c“c* !/~c* c!. ~4!
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FIG. 1. Particle in a (30°,60°)-right triangular billiard in a chaotic regime. The initial wave function is given by Eq.~10!, with initial
position (x050.1, y050.5). The system of units used here and in the following figures is such thatL51 and\2/2ML251. From top to
bottom:~a! Bohmian trajectory in thexy plane;~b! power spectral density as a function of frequency obtained from the power series ofx(t);
~c! Lyapunov exponentl as a function of time.
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Note that the position and velocity of the particle are w
defined at all times, provided the initial position does not
on a node of the wave function.

It follows that the particle trajectory satisfies the modifi
Newton’s second law:

M
d2r

dt2
52“~V1Q!ur5r (t) . ~5!

In most cases of interest, this equation is hard to solve a
lytically, so one resorts to numerical methods. In this wo
we integrate it numerically by using the fourth-order Rung
Kutta method@14#, with the initial conditionsr (t50)5r0
andv(t50)5v0, wherev0 depends on the initial position o
the particle in the billiards domain.

We studied the Bohm’s trajectories in right triangle b
liards for rational anglesa5p/qp, with a5p/4 and a
5p/6 @15#. It is known that these billiards exhibit full inte
grability when in the classical regime, with trajectories lyin
on a bidimensional torus in the phase space. These two c
are the only ones which are completely integrable, i.e.,
01621
l
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can always construct a bidimensional invariant surface e
bedded in a quadridimensional phase space. The billiards
pseudointegrable for other rational angles, and their traje
ries wander throughout the whole phase space@16#.

The wave functions satisfy Schro¨dinger equation with
null boundary conditions at the billiard sides. In this wor
we use scaling lengths and energies such thatL51 and
\2/2ML251. In the case of the (30°,60°) billiard, th
eigenfunctions and energies are given, respectively, by

fm,n~x,y!5sinS p

A4 3
n~A4 32x!D sinS p

A4 27
~n22m!yD

1sinS p

A4 3
m~A4 32x!D sinS p

A4 27
~2n2m!yD

2sinS p

A4 3
~n2m!~A4 32x!D sinS p

A4 27
~n1m!yD

~6!
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FIG. 2. Particle in a (30°,60°)-right triangular billiard in a quasiperiodic regime. The initial wave function is the same used in F~1!.
The initial position is (x050.35, y050.4). From top to bottom:~a! real space Bohmian trajectory;~b! power spectrum from the time serie
of x(t); ~c! time evolution of the Lyapunov exponent.
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En,m5
4p2

A@27
~n21m22nm!, ~7!

with the constraintsnÞm, nÞ2m, mÞ2n. In the case of
the (45°,45°) billiard, the eigenfunctions and energies
given by

cm,n~x,y!5sin~p nx! sin@pm~12y!#

2sin~p mx!sin@pn~12y!# ~8!

and

En,m5p2~n21m2!, nÞm. ~9!

We should point out that the level spacing statistics of th
billiards does not produce a Poisson-like distributionP(t)
;e2t as expected for such classically integrable syste
@15#.

To analyze the behavior of the Bohmian trajectories
those billiards, which are obtained from numerical integ
tion of Eq. ~4!, we use well-established traditional metho
01621
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from classical dynamics: Fourier spectra of the time se
x5x(t) and direct calculation of the time evolution of th
Lyapunov exponents@17#. In all cases analyzed, we used th
fourth-order Runge-Kutta method with a time-step integ
tion of h51024. The initial wave function was kept fixed
while we used several initial positions in the billiard. In th
way, we found some situations, where the trajectory is as
ciated to a chaotic regime and others to a quasiperiodic
gime. These different kinds of dynamics are due to the str
variations of the time-dependent quantum potential in
billiards. One should also note that in classical dynam
there are always periodic orbits amidst chaotic trajectorie
the phase space.

Let us consider first the integrable (30°,60°) billiard. W
choose the linear combination of the billiard energy eige
functions

C~x,y,0!5f2,31f1,51 if3,5 ~10!

as the initial wave function, withfm,n given by Eq.~6!. Note
that the wave function is complex so as to ensure that
particle has a nonzero initial velocity@11#. As one instance of
chaotic behavior, we present the results obtained for the
6-3
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FIG. 3. Particle in a (45°,45°)-right triangular billiard in a chaotic regime. The initial wave function is given by Eq.~11!, and the initial
position is (x050.5, y050.4). From top to bottom:~a! Bohmian trajectory;~b! power spectrum of the time seriesx(t); ~c! Lyapunov
exponent as a function of time.
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tial position (x050.1, y050.5). Figure 1~a! shows the re-
sulting chaotic Bohmian trajectory in thexy plane. We note
that the trajectory visits a wide area of the billiard. Howev
it never hits the walls, where the quantum potential
strongly repulsive. The chaotic nature of the trajectory is a
evident in the power spectrum of the time series ofx(t)
depicted in Fig. 1~b!. The broad band in the frequency spe
trum is a typical signal of chaos. A quantitative measure
the nature of the trajectories is given by the Lyapunov ex
nentl as a function of time. Our results forl are shown in
Fig. 1~c!. The positiveness of the largest Lyapunov expon
in the figure indicates strongly that the trajectory in the ph
space is very sensitive to small variations of the initial co
ditions. That is, the trajectory is chaotic.

In Fig. 2, we changed the initial position to (x050.35,
y050.4) in the (30°,60°) billiard, but kept the same initi
wave function, Eq.~10!. In contrast to the previous case, w
now obtain regular motion, with the quantum trajectory lyi
within a limited region, thus forming a caustic, as shown
Fig. 2~a!. Therefore, the trajectory is not chaotic@18#. The
power spectrum, shown in Fig. 2~b!, has sharp peaks whic
depend on the basic frequencies of the systemv5(Ei
01621
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2Ej)/\ and their harmonics, withi and j representing energy
quantum numbers. Note also that the power spectrum d
not show any background noise. These are features of a r
lar, quasiperiodic regime. The largest Lyapunov expone
which is shown in Fig. 2~c!, falls off to zero exponentially, as
expected for systems in the regular regime. Such perio
motion is similar to the periodic orbits found in classic
systems which exhibit chaos.

Similarly, for the (45°,45°) billiard, we can have bot
chaotic and regular motion, depending on the initial positi
We consider the cases where the initial wave function
given by

C~x,y,0!5c1,21c1,31 ic2,3, ~11!

with the componentscm,n given by Eq. ~8!. First, let us
analyze the results for the initial position (x050.5, y0
50.4). Figure 3~a! shows a chaotic trajectory in thexy
plane. Again, we have a nonregular trajectory that spans o
a large portion of the billiard, but it never hits the walls. Th
power spectrum, Fig. 3~b!, displays the features associated
chaos, that is, broad background band with a few sh
6-4
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FIG. 4. Particle in a (45°,45°)-right triangular billiard in a quasiperiodic regime. The initial wave function is the same used in F~3!,
and the initial position is (x050.3, y050.5). From top to bottom:~a! Bohmian trajectory;~b! power spectrum of the time seriesx(t); ~c!
time evolution of the Lyapunov exponent.
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peaks. Moreover, the largest Lyapunov exponentl, seen in
Fig. 3~c!, is positive so that the trajectory thus obtained
definitely chaotic. By taking now a different initial position
(x050.3, y050.5), we obtain regular motion, with the tra
jectory concentrated in the central area of the billiard, rese
bling a Lissajous figure, which can be seen in Fig. 4~a!. Such
trajectory is quasiperiodic, however, it could also be infer
easily from the power spectrum, Fig. 4~b!, and the from van-
ishing of the largest Lyapunov exponent at long times,
seen in Fig. 4~c!.

It is worthwhile to take a look at the stroboscopic Po
caré sections corresponding to the trajectories discus
above, Figs. 5~a! and 5~b!. The top plot is for the
(30°,60°)—whereas the bottom plot is for the (45°,45°) b
liard. Each plot shows an isolated set of points~represented
here by squares! that lie on a single curve for the quasipe
odic trajectories, and a set of points corresponding to cha
trajectories that span the entire phase space. That is, ind
a clear indication of the difference between the two regim
What is really surprising with Bohmian trajectories is t
fact that one can still find stable periodic orbits in classica
integrable triangles, since the quantum potential is usu
01621
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nonlinear~as well as time dependent!, which would likely
foster chaotic behavior. Actually, for a given initial wav
packet, our numerical data shows that only for some spe
initial positions did we find quasiperiodic behavior. We pe
formed a large amount of calculations, using different wa
packets, sweeping the billiards areas for initial positions
regular intervals. It just seems that almost all the initial p
sitions yield chaos, except those drawn from a few region
the phase space, in which the trajectories are stable qua
eriodic orbits. However, we did not find evidence for a
discernible pattern of initial positions that lead to quasipe
odic behavior. Note that unstable periodic orbits are usu
not attainable in numerical integration due to rounding-
errors, which drive the trajectory away from its due cour
resulting in chaotic behavior. Since the location of regio
containing initial positions that yield quasiperiodic orbits d
pends on the choice of the initial wave packet, we we
unable to obtain any further insight on the dependence of
location of initial positions with the appearance of regu
behavior.

To summarize, despite exhibiting full integrability in cla
sical mechanics, the (45°,45°)- and (30°,60°)-right triang
6-5



J. A. de SALES AND J. FLORENCIO PHYSICAL REVIEW E67, 016216 ~2003!
FIG. 5. Stroboscopic plots for the Bohmian trajectories shown in Figs.~1!–~4!. Top ~a!, (30°,60°) billiard; bottom~b!, (45°,45°) billiard.
The squares are from quasiperiodic trajectories while the scattered points are from chaotic trajectories.
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lar billiards in their quantum versions allow for chaos as w
as for periodic behavior within Bohm’s formalism. This d
pends on the initial position of the particle and the choice
initial wave packet. Thus, both regular and chaotic behav
can also be found in other trajectories depending on
choice of initial positions with same initial wave packet.
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