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Quantum chaotic trajectories in integrable right triangular billiards
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Right triangular billiards are very simple systems that are completely integrable in classical mechanics for
acute angle pairs (45°,45°) and (30°,60°). In quantum mechanics, the energy level spacing distribution of
these billiards are neither Poisson-like nor Wigner-like. We use Bohm'’s formalism to calculate the trajectories,
by numerical methods, for a particle inside these billiards. We use a linear combination of the first three energy
states as the initial wave function. We show that a particle can have quasiperiodic or chaotic behavior,
depending on its initial position in the billiards.
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Chaos in quantum systems has received a lot of attentioarder to obtain chaos. Chaos in Bohmian mechanics were
since it was conjectured that a signature of chaos could balso reported in nonisotropic harmonic oscillatf®$ and in
provided by random matrix theofyl,2]. Level spacing sta- Systems of noninteracting particlgs0].
tistics of quantum systems that are classically chaotic is sup- The present work aims at the study of Bohmian trajecto-
posed to yield a Gaussian-like distribution. This Wigner sur-fies in triangular billiards. Our purpose is to determine the
mise was conjectured by Bohigaat al. [3]. Despite its trajectories for several initial positions, however, with the
success in many cases, there are a few examples in whiggme initial wave function. As we shall see below, we obtain
such conjecture fail$4]. In fact, the signature of chaos in both regular and chaotic solutions, as in classical systems.
quantum systems is still a subject of controversy. In order to study the dynamics of quantum systems in

The current studies of quantum billiards in conventionalcausal Bohm's theorj11-13, one first takes the wave func-
quantum mechanics have shown behaviors that are similar #n #(x,y,t) in polar form, i.e., y=Rexp(-iS%), into
those in the classical world: integrable classical systems argchralinger equation. After some algebraic manipulations,
also integrable in quantum mechanics; ergodic classical sydhat equation separates into two equations, one for the am-
tems are also ergodic in quantum mechanics. Integrable syBlitude R and the other for the phasg as follows:
tems yield a Poisson-like distribution for the neighboring

level spacing statistics, while ergodic systems produce a IR? R?VS

Gaussian-like distribution. A complete theory for quantum T M =0, @
systems with intermediate statistics is still lacking. In inte-

grable classical systems, we can use the semiclassical theory S (V9?2

to quantize the classical Hamiltonian, while for ergodic sys- J +( ) +V+Q=0, )

tems, the analysis rests mainly on the behavior of the Wigner s 2M

function in the phase space. However, the quantization of

classical Hamiltonians of systems that are neither integrablahere V is the ordinary quantized potential amd is the

nor ergodic is not trivial. mass of the particle. The quantiy= — (4%/2M)(V2R/R) is
The application of causal quantum mechanics theory, folthe so-called quantum potential. Equatidn represents the

lowing Bohm'’s interpretation, in the study of billiards and in conservation of probability flux, whereas E8) can be iden-

other systems have shown striking surprises when we anaified as a generalized Hamilton-Jacobi equation with the

lyze a single Bohmian trajectory of an individual systemuysual potential replaced by the effective potenWak;=V

[5,6]. Some authors have found chaotic trajectories in sys+Q.

tems that are integrable in the classical domain. Konkel and In Bohm’s theory, an additional postulate is introduced:

Makowski[7] studied the Bohmian trajectories of a particle the momentum of the particle is defined by

in a square billiard and found evidence of chaotic behavior

based on an analysis of the patterns of the nodal lines. The p=VS. 3

same system was investigated by Bonfanal. [8], who

found that a initial wave function consisting of energy elgen_l.-hence, the velocity of the particley=p/M, can be ex-

states must necessarily have at least three components i X :
pressed in terms of the wave function
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FIG. 1. Particle in a (30°,60°)-right triangular billiard in a chaotic regime. The initial wave function is given b{l&gwith initial
position xo=0.1, yo=0.5). The system of units used here and in the following figures is such that and%2/2ML?=1. From top to
bottom:(a) Bohmian trajectory in thay plane;(b) power spectral density as a function of frequency obtained from the power sexi@3;of
(c) Lyapunov exponenk as a function of time.

Note that the position and velocity of the particle are wellcan always construct a bidimensional invariant surface em-
defined at all times, provided the initial position does not liebedded in a quadridimensional phase space. The billiards are

on a node of the wave function. pseudointegrable for other rational angles, and their trajecto-
It follows that the particle trajectory satisfies the modifiedries wander throughout the whole phase sgd&s.
Newton’s second law: The wave functions satisfy Schdimger equation with
null boundary conditions at the billiard sides. In this work,
d2r we use scaling lengths and energies such thatl and
M— = -V(V+ Q)|,:r(t). (5) #2/2ML?=1. In the case of the (30°,60°) billiard, the
dt eigenfunctions and energies are given, respectively, by
In most cases of interest, this equation is hard to solve ana- T T
lytically, so one resorts to numerical methods. In this work,qﬁm,n(X,y)=Sin(%n(4 3—x))sin<ﬁ(n—2m)y)

we integrate it numerically by using the fourth-order Runge-

Kutta method[14], with the initial conditionsr(t=0)=r,

andv(t=0)=v,, wherev, depends on the initial position of N T

the particle in the billiards domain. *sin ggM(3—x)sin zo=(2n—my
We studied the Bohm’s trajectories in right triangle bil-

liards for rational anglesx=p/qw, with a=x/4 and «

=/6 [15]. Itis k that th illi hibit full inte- T 4 T
T __[ y| is known tha ese_b| |arc_js ex _|b| ull inte —sin| 7= (n—m)(4B=x) |sin 7= (n+m)y
grability when in the classical regime, with trajectories lying i3 327
on a bidimensional torus in the phase space. These two cases
are the only ones which are completely integrable, i.e., one (6)
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FIG. 2. Particle in a (30°,60°)-right triangular billiard in a quasiperiodic regime. The initial wave function is the same usedin Fig.
The initial position is &,=0.35,y,=0.4). From top to bottom(a) real space Bohmian trajectorfh) power spectrum from the time series
of x(t); (c) time evolution of the Lyapunov exponent.

and from classical dynamics: Fourier spectra of the time series
x=Xx(t) and direct calculation of the time evolution of the

o 472 2y 2 o Lyapunov exponentgl7]. In all cases _analyz_ed, we us_ed the

nm= \/E27(” m"—nm), fourth-order Runge-Kutta method with a time-step integra-

tion of h=10"%. The initial wave function was kept fixed,
with the constraintsi#m, n#2m, m#2n. In the case of While we used several initial positions in the billiard. In this
the (45°,45°) billiard, the eigenfunctions and energies aravay, we found some situations, where the trajectory is asso-

given by ciated to a chaotic regime and others to a quasiperiodic re-
gime. These different kinds of dynamics are due to the strong
Ymn(X,y)=sin(7 nx) sif7m(1-y)] variations of the time-dependent quantum potential in the
. . billiards. One should also note that in classical dynamics,
—sin(z mx)si7n(1-y)] ®)  there are always periodic orbits amidst chaotic trajectories in
and the phase space.
Let us consider first the integrable (30°,60°) billiard. We
Enm= mw?(n>+m?), n#m. 9) choose the linear combination of the billiard energy eigen-
functions
We should point out that the level spacing statistics of these
billiards does not produce a Poisson-like distributi®(t) V(X,y,00=dy3t d15Tid3s (10
~e ' as expected for such classically integrable systems
[15]. as the initial wave function, witkp,, , given by Eq.(6). Note

To analyze the behavior of the Bohmian trajectories inthat the wave function is complex so as to ensure that the
those billiards, which are obtained from numerical integra-particle has a nonzero initial velocifg1]. As one instance of
tion of Eq. (4), we use well-established traditional methodschaotic behavior, we present the results obtained for the ini-
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FIG. 3. Particle in a (45°,45°)-right triangular billiard in a chaotic regime. The initial wave function is given byt Bgand the initial
position is ,=0.5, y,=0.4). From top to bottom{a) Bohmian trajectoryjb) power spectrum of the time serigst); (c) Lyapunov
exponent as a function of time.

tial position o=0.1, yo=0.5). Figure 1a) shows the re- —E)/% and their harmonics, withandj representing energy
sulting chaotic Bohmian trajectory in they plane. We note  gquantum numbers. Note also that the power spectrum does
that the trajectory visits a wide area of the billiard. However,not show any background noise. These are features of a regu-
it never hits the walls, where the quantum potential isjar, quasiperiodic regime. The largest Lyapunov exponent,
strongly repulsive. The chaotic nature of the trajectory is alsQynich is shown in Fig. &), falls off to zero exponentially, as
evident in the power spectrum of the time seriesxf)  expected for systems in the regular regime. Such periodic
depicted in Fig. tb). The broad band in the frequency spec- motion is similar to the periodic orbits found in classical
trum is a typical signal of chaos. A quantitative measure Ofsystems which exhibit chaos.

the nature of the trajectories is given by the Lyapunov expo- gimilarly, for the (45°,45°) billiard, we can have both
nent\ as a function of time. Our results farare shown in  chaotic and regular motion, depending on the initial position.

Fig. 1(c). The positiveness of the largest Lyapunov exponeniye consider the cases where the initial wave function is
in the figure indicates strongly that the trajectory in the phasgiven by

space is very sensitive to small variations of the initial con-
ditions. That is, the trajectory is chaotic. W(X,Y,00= 1ot h1 3t i3, 11)

In Fig. 2, we changed the initial position tog=0.35,
Yo=0.4) in the (30°,60°) billiard, but kept the same initial with the components), , given by Eq.(8). First, let us
wave function, Eq(10). In contrast to the previous case, we analyze the results for the initial positiorx(=0.5, y,
now obtain regular motion, with the quantum trajectory lying =0.4). Figure 8) shows a chaotic trajectory in they
within a limited region, thus forming a caustic, as shown inplane. Again, we have a nonregular trajectory that spans over
Fig. 2@). Therefore, the trajectory is not chaofit8]. The a large portion of the billiard, but it never hits the walls. The
power spectrum, shown in Fig(l9, has sharp peaks which power spectrum, Fig.(8), displays the features associated to
depend on the basic frequencies of the system (E; chaos, that is, broad background band with a few sharp
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FIG. 4. Particle in a (45°,45°)-right triangular billiard in a quasiperiodic regime. The initial wave function is the same used3) Fig.
and the initial position isX;=0.3, yo=0.5). From top to bottom(a) Bohmian trajectory{b) power spectrum of the time serigét); (c)
time evolution of the Lyapunov exponent.

peaks. Moreover, the largest Lyapunov exponenseen in  nonlinear(as well as time dependentwvhich would likely
Fig. 3(c), is positive so that the trajectory thus obtained isfoster chaotic behavior. Actually, for a given initial wave
definitely chaotic. By taking now a different initial position, packet, our numerical data shows that only for some special
(x0=0.3, yp=0.5), we obtain regular motion, with the tra- initial positions did we find quasiperiodic behavior. We per-
jectory concentrated in the central area of the billiard, resemformed a large amount of calculations, using different wave
bling a Lissajous figure, which can be seen in Fig)4Such  packets, sweeping the billiards areas for initial positions at
trajectory is quasiperiodic, however, it could also be inferredregular intervals. It just seems that almost all the initial po-
easily from the power spectrum, Figld, and the from van- sitions yield chaos, except those drawn from a few regions of
ishing of the largest Lyapunov exponent at long times, ashe phase space, in which the trajectories are stable quasip-
seen in Fig. 4&). eriodic orbits. However, we did not find evidence for any
It is worthwhile to take a look at the stroboscopic Poin-discernible pattern of initial positions that lead to quasiperi-
care sections corresponding to the trajectories discusseddic behavior. Note that unstable periodic orbits are usually
above, Figs. &) and 8b). The top plot is for the not attainable in numerical integration due to rounding-off
(30°,60°)—whereas the bottom plot is for the (45°,45°) bil- errors, which drive the trajectory away from its due course,
liard. Each plot shows an isolated set of poifrepresented resulting in chaotic behavior. Since the location of regions
here by squargghat lie on a single curve for the quasiperi- containing initial positions that yield quasiperiodic orbits de-
odic trajectories, and a set of points corresponding to chaotipends on the choice of the initial wave packet, we were
trajectories that span the entire phase space. That is, indeathable to obtain any further insight on the dependence of the
a clear indication of the difference between the two regimeslocation of initial positions with the appearance of regular
What is really surprising with Bohmian trajectories is the behavior.
fact that one can still find stable periodic orbits in classically To summarize, despite exhibiting full integrability in clas-
integrable triangles, since the quantum potential is usuallgical mechanics, the (45°,45°)- and (30°,60°)-right triangu-
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FIG. 5. Stroboscopic plots for the Bohmian trajectories shown in Figs(4). Top (a), (30°,60°) billiard; bottom(b), (45°,45°) billiard.
The squares are from quasiperiodic trajectories while the scattered points are from chaotic trajectories.
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